Watch Airbone Risks

A PRODUCT INSPIRED BY 100 WORLDWIDE RESEARCH PAPERS

REFERENCES

  1. Abkarian, M., Mendez, S., Xue, N., Yang, F., and Stone, H. A. (2020a). Puff trains in speaking produce long-range turbulent jet-like transport potentially relevant to asymptomatic spreading of viruses. arXiv preprint arXiv:2006.10671.

  2. Abkarian, M., Mendez, S., Xue, N., Yang, F., and Stone, H. A. (2020b). Speech can produce jet-like transport relevant toasymptomatic spreading of virus. Proceedings of the National Academy of Sciences, 117(41):25237.

  3. Abkarian, M. and Stone, H. (2020). Stretching and break-up of saliva filaments during speech: A route for pathogen aerosolization and its potential mitigation. Physical Review Fluids, 5(10):102301.

  4. Alford RH, Kasel JA, Gerone PJ, Knight V. Human influenza resulting from aerosol inhalation. Exp Biol Med. 1966;122(3):800-804. https://doi.org/10.3181/00379 727-122-31255

  5. Asadi, S., Bouvier, N., Wexler, A. S., and Ristenpart, W. D. (2020a). The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Science and Technology, 54(6):635–638.

  6. Asadi, S., Cappa, C. D., Barreda, S., Wexler, A. S., Bouvier, N. M., and Ristenpart, W. D. (2020b). Efficacy of masks and face coverings in controlling outward aerosol particle emission from expiratory activities. Scientific reports, 10(1):1–13.

  7. Asadi, S., Wexler, A. S., Cappa, C. D., Barreda, S., Bouvier, N. M., and Ristenpart, W. D. (2019). Aerosol emission and superemission during human speech increase with voice loudness. Scientific Reports, 9(1):1–10.

  8. Asadi, S., Wexler, A. S., Cappa, C. D., Barreda, S., Bouvier, N. M., and Ristenpart, W. D. (2020c). Effect of voicing and articulation manner on aerosol particle emission during human speech. PloS One, 15(1):e0227699.

  9. Bazant, M. Z. and Bush, J. W. M. (2021). A guideline to limit indoor airborne transmission of COVID-19. PNAS, in press. Preprint: Beyond six feet, medRxiv (2020), https://doi.org/10.1101/2020.08.26.20182824.

  10. Beggs, C., Noakes, C., Sleigh, P., Fletcher, L., and Siddiqi, K. (2003). The transmission of tuberculosis in confined spaces: an analytical review of alternative epidemiological models. Int. J. Tuberculosis and Lung Disease, 7(11):1015–1026.

  11. Bhagat, R. K., Wykes, M. D., Dalziel, S. B., and Linden, P. (2020). Effects of ventilation on the indoor spread of COVID-19. Journal of Fluid Mechanics, 903.

  12. Binazzi B, Lanini B, Bianchi R, et al. Breathing pattern and kinematics in normal subjects during speech, singing and loud whispering. Acta Physiol. 2006;186:233-246.

  13. Bourouiba, L., Dehandschoewercker, E., and Bush, J.W. M. (2014). Violent expiratory events: on coughing and sneezing. Journal of Fluid Mechanics, 745:537–563.

  14. Bueno de Mesquita, P. J., Noakes, C. J., and Milton, D. K. (2020). Quantitative aerobiologic analysis of an influenza human challenge-transmission trial. Indoor air, 30(6):1189–1198.

  15. Buonanno, G., Morawska, L., and Stabile, L. (2020a). Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection. Environment International, 145:106112.

  16. Buonanno, G., Stabile, L., and Morawska, L. (2020b). Estimation of airborne viral emission: quanta emission rate of SARS-CoV-2 for infection risk assessment. Environment International, 141:105794.

  17. Chen, C.-C. and Willeke, K. (1992). Aerosol penetration through surgical masks. American journal of infection control, 20(4):177–184.

  18. Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223):507–513.

  19. Cheng, K.-C., Acevedo-Bolton, V., Jiang, R.-T., Klepeis, N. E., Ott,W. R., Fringer, O. B., and Hildemann, L. M. (2011). Modeling exposure close to air pollution sources in naturally ventilated residences: Association of turbulent diffusion coefficient with air change rate. Environmental Science & Technology, 45(9):4016–4022.

  20. Corman VM, Eckerle I, Bleicker T, et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill. 2012;17(39):20285. https://doi.org/10.2807/ese.17.39.20285-en

  21. Corner, J. and Pendlebury, E. (1951). The coagulation and deposition of a stirred aerosol. Proceedings of the Physical Society. Section B, 64(8):645.

  22. Davies, N. G., Barnard, R. C., Jarvis, C. I., Kucharski, A. J., Munday, J., Pearson, C. A., Russell, T. W., Tully, D. C., Abbott, S., Gimma, A., et al. (2020). Estimated transmissibility and severity of novel SARS-CoV-2 variant of concern 202012/01 in england. medRxiv.

  23. Davis, M. E. and Davis, R. J. (2012). Fundamentals of Chemical Reaction Engineering. Courier Corporation.

  24. Evans, M. (2020). Avoiding COVID-19: Aerosol guidelines. arXiv preprint arXiv:2005.10988.

  25. FilipiΔ, A., Gutierrez-Aguirre, I., Primc, G., MozetiA, M., and Dobnik, D. (2020). Cold plasma, a new hope in the field of virus inactivation. Trends in Biotechnology, 38:1278–1291.

  26. Fisk, W. J. (2000). Health and productivity gains from better indoor environments and their relationship with building energy efficiency. Annual review of energy and the environment, 25(1):537–566.

  27. Fisk, W. J. and De Almeida, A. T. (1998). Sensor-based demand-controlled ventilation: a review. Energy and buildings, 29(1):35–45.

  28. Fisk, W. J., Satish, U., Mendell, M. J., Hotchi, T., and Sullivan, D. (2013). Is co2 an indoor pollutant? higher levels of co2 may diminish decision making performance. ASHRAE JOURNAL, 55(LBNL-6148E).

  29. Foster, A. and Kinzel, M. (2021). Estimating covid-19 exposure in a classroom setting: A comparison between mathematical and numerical models. Physics of Fluids, 33(2):021904.

  30. Gammaitoni, L. and Nucci, M. C. (1997). Using a mathematical model to evaluate the efficacy of TB control measures. Emerging Infectious Diseases, 3(3):335.

  31. García de Abajo, F. J., Hernández, R. J., Kaminer, I., Meyerhans, A., Rosell-Llompart, J., and Sanchez-Elsner, T. (2020). Back to normal: An old physics route to reduce SARS-CoV-2 transmission in indoor spaces. ACS Nano, 14(7):7704–7713.

  32. Garg, S. (2020). Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019: COVID-NET, 14 States, March 1–30, 2020. MMWR. Morbidity and Mortality Weekly Report, 69.

  33. Hamner, L. (2020). High SARS-CoV-2 attack rate following exposure at a choir practice, Skagit County, Washington, March 2020. MMWR. Morbidity and Mortality Weekly Report, 69.

  34. Hartmann, A. and Kriegel, M. (2020). Risk assessment of aerosols loaded with virus based on co2-concentration. TU Berlin preprint, accessed April 3, 2021.

  35. Hitchman, M. L. (2021). A new perspective of the chemistry and kinetics of inactivation of covid-19 coronavirus aerosols. Future Virology, 15(12):823–835.

  36. Hung, I.-F. and Derossis, P. (1989). Carbon dioxide concentration as indicator of indoor air quality. Journal of Environmental Science and Health . Part A: Environmental Science and Engineering, 24(4):379–388.

  37. Hwang, S. E., Chang, J. H., Bumjo, O., and Heo, J. (2020). Possible aerosol transmission of COVID-19 associated with an outbreak in an apartment in Seoul, South Korea. International Journal of Infectious Diseases.

  38. Jayaweera, M., Perera, H., Gunawardana, B., and Manatunge, J. (2020). Transmission of COVID-19 virus by  roplets and aerosols. Environ Res., 188(109819).

  39. Jones TC, Mühlemann B, Veith T, et al. An analysis of SARSCoV-2 viral load by patient age. medRxiv. 2020. https://doi.org/10.1101/2020.06.08.20125484

  40. Khan, K., Bazant, M. Z., and Bush, J. W. M. (2020). COVID-19 indoor safety guideline. Online app, https://indoor-covidsafety. herokuapp.com.

  41. Konda, A., Prakash, A., Moss, G. A., Schmoldt, M., Grant, G. D., and Guha, S. (2020). Response to letters to the editor on aerosol filtration efficiency of common fabrics used in respiratory cloth masks: Revised and expanded results. ACS Nano, 14(9):10764–10770.

  42. Krawczyk, D., Rodero, A., Gładyszewska-Fiedoruk, K., and Gajewski, A. (2016). Co2 concentration in naturally ventilated classrooms located in different climates—measurements and simulations. Energy and Buildings, 129:491–498.

  43. Kwon, K.-S., Park, J.-I., Park,Y. J., Jung, D.-M., Ryu, K.-W., and Lee, J.-H. (2020). Evidence of long-distance droplet transmission of SARS-CoV-2 by direct air flow in a restaurant in Korea. J. Korean Med. Sci., 35((46):e415).

  44. Lai, A., Cheung, A., Wong, M., and Li, W. (2016). Evaluation of cold plasma inactivation efficacy against different airborne bacteria in ventilation duct flow. Building and Environment, 98:39–46.

  45. Lednicky, J. A., Lauzard, M., Fan, Z. H., Jutla, A., Tilly, T. B., Gangwar, M., Usmani, M., Shankar, S. N., Mohamed, K., Eiguren-Fernandez, A., et al. (2020). Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. International Journal of Infectious Diseases, 100:476–482.

  46. Lewis, D. (2021). Covid-19 rarely spreads through surfaces. so why are we still deep cleaning. Nature, 590(7844):26–28.

  47. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S., Lau, E. H., Wong, J. Y., et al. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of Medicine, 382:1199–1207.

  48. Li, Y., Guo, Y. P., Wong, K. C. T., Chung, W. Y. J., Gohel, M. D. I., and Leung, H. M. P. (2008). Transmission of communicable respiratory infections and facemasks. Journal of multidisciplinary healthcare, 1:17.

  49. Li, Y., Leung, G. M., Tang, J., Yang, X., Chao, C., Lin, J. Z., Lu, J., Nielsen, P. V., Niu, J., Qian, H., et al. (2007). Role of ventilation in airborne transmission of infectious agents in the built environment-a multidisciplinary systematic review. Indoor air, 17(1):2–18.

  50. Lin, K. and Marr, L. C. (2019). Humidity-dependent decay of viruses, but not bacteria, in aerosols and droplets follows disinfection kinetics. Environmental Science & Technology, 54(2):1024–1032.

  51. Linden, P., Lane-Serff, G., and Smeed, D. (1990). Emptying filling boxes: the fluid mechanics of natural ventilation. Journal of Fluid Mechanics, 212:309–335.

  52. Linden, P. F. (1999). The fluid mechanics of natural ventilation. Annual Review of Fluid Mechanics, 31(1):201–238.

  53. Lindsley WG, Blachere FM, Beezhold DH, et al. Viable influenza A virus in airborne particles expelled during coughs versus exhalations. Influenza Other Respir Viruses. 2016;10:404-413.

  54. Liu, L.-J. S., Krahmer, M., Fox, A., Feigley, C. E., Featherstone, A., Saraf, A., and Larsson, L. (2000). Investigation of the concentration of bacteria and their cell envelope components in indoor air in two elementary schools. Journal of the Air &Waste Management Association, 50(11):1957–1967.

  55. Marr, L. C., Tang, J. W., Van Mullekom, J., and Lakdawala, S. S. (2019). Mechanistic insights into the effect of humidity on airborne influenza virus survival, transmission and incidence. Journal of the Royal Society Interface, 16(150):20180298.

  56. Martin, D. and Nokes, R. (1988). Crystal settling in a vigorously converting magma chamber. Nature, 332(6164):534–536.

  57. Mendell, M. J., Eliseeva, E. A., Davies, M. M., Spears, M., Lobscheid, A., Fisk, W. J., and Apte, M. G. (2013). Association of classroom ventilation with reduced illness absence: a prospective study in california elementary schools. Indoor air, 23(6):515–528.

  58. Miller, S. L., Nazaroff, W. W., Jimenez, J. L., Boerstra, A., Buonanno, G., Dancer, S. J., Kurnitski, J., Marr, L. C., Morawska, L., and Noakes, C. (2020). Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air, page in press.

  59. Milton, D. K., Glencross, P. M., and Walters, M. D. (2000). Risk of sick leave associated with outdoor air supply rate, humidification, and occupant complaints. Indoor air, 10(4):212–221.

  60. Moghadas, S. M., Fitzpatrick, M. C., Sah, P., Pandey, A., Shoukat, A., Singer, B. H., and Galvani, A. P. (2020). The implications of silent transmission for the control of covid-19 outbreaks. Proceedings of the National Academy of Sciences, 117(30):17513–17515.

  61. Morawska, L. and Cao, J. (2020). Airborne transmission of SARS-CoV-2: The world should face the reality. Environment International, 139:105730.

  62. Morawska, L., Johnson, G., Ristovski, Z., Hargreaves, M., Mengersen, K., Corbett, S., Chao, C., Li, Y., and Katoshevski, D. (2009). Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Journal of Aerosol Science, 40:256–269.

  63. Morawska, L. and Milton, D. K. (2020). It is time to address airborne transmission of COVID-19. Clinical Infectious Diseases, 71:2311–2313.

  64. Morawska L, Tang JW, Bahnfleth W, et al. How can airborne transmission of COVID-19 indoors be minimised? Environ Int. 2020;142:105832.  

  65. Moriarty, L. F. (2020). Public health responses to COVID-19 outbreaks on cruise ships worldwide, February–March 2020. MMWR. Morbidity and Mortality Weekly Report, 69.

  66. Nardell EA, Nathavitharana RR. Airborne spread of SARS-CoV-2 and a potential role for air disinfection. JAMA. 2020;324(2):141–142. https://doi.org/10.1001/jama.2020.7603

  67. Nicas, M., Nazaroff,W.W., and Hubbard, A. (2005). Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. J. Occ. Env. Hygiene, 2(3):143–154.

  68. Nishiura, H., Oshitani, H., Kobayashi, T., Saito, T., Sunagawa, T., Matsui, T., Wakita, T., COVID, M., and Suzuki, M. (2020). Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19). medRxiv.

  69. Noakes, C., Beggs, C., Sleigh, P., and Kerr, K. (2006). Modelling the transmission of airborne infections in enclosed spaces. Epidemiology & Infection, 134(5):1082–1091.

  70. Noakes, C. J. and Sleigh, P. A. (2009). Mathematical models for assessing the role of airflow on the risk of airborne infection in hospital wards. Journal of the Royal Society Interface, 6(suppl_6):S791–S800.

  71. Oberg, T. and Brosseau, L. M. (2008). Surgical mask filter and fit performance. American journal of infection control, 36(4):276–282.

  72. Pan, J., Harb, C., Leng,W., and Marr, L. C. (2020). Inward and outward effectiveness of cloth masks, a surgical mask, and a face shield. medRxiv.

  73. Peng, Z. and Jimenez, J. L. (2021). Exhaled co2 as covid-19 infection risk proxy for different indoor environments and activities. Environmental Science and Technology Letters.

  74. Persily, A. and de Jonge, L. (2017). Carbon dioxide generation rates for building occupants. Indoor air, 27(5):868–879.

  75. Prather, K. A., Marr, L. C., Schooley, R. T., McDiarmid, M. A., Wilson, M. E., and Milton, D. K. (2020). Airborne transmission of sars-cov-2. Science, 370(6514):303–304.

  76. Prentiss, M. G., Chu, A., and Berggren, K. K. (2020). Superspreading events without superspreaders: Using high attack rate events to estimate => for airborne transmission of COVID-19. medRxiv.

  77. Prill, R. et al. (2000). Why measure carbon dioxide inside buildings. Published by Washington State University Extension Energy Program WSUEEP07, 3.

  78. Riediker, M. and Morawska, L. (2020). Low exhaled breath droplet formation may explain why children are poor SARS-CoV-2 transmitters. Aerosol and Air Quality Research, 20(7):1513–1515.

  79. Riley, E. C., Murphy, G., and Riley, R. L. (1978). Airborne spread of measles in a suburban elementary school. American Journal of Epidemiology, 107(5):421–432.

  80. Rudnick, S. and Milton, D. (2003). Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor air, 13(3):237–245.

  81. Salisbury, S. (1986). Measuring carbon dioxide levels as an indicator of poor building ventilation: A case study. In Proc IAQ’86, pages 78–82.

  82. Santarpia, J. L., Herrera, V. L., Rivera, D. N., Ratnesar-Shumate, S., Reid, S., Denton, P. W., Martens, J., Fang, Y., Conoan, N., Callahan, M. V., Lawler, J. V., Brett-Major, D. M., and Lowe, J. J. (2020). The infectious nature of patient-generated SARS-CoV-2 aerosol. medRxiv.

  83. Schwartz, A., Stiegel, M., Greeson, N., Vogel, A., Thomann,W., Brown, M., Sempowski, G. D., Alderman, T. S., Condreay, J. P., Burch, J., et al. (2020). Decontamination and reuse of N95 respirators with hydrogen peroxide vapor to address worldwide personal protective equipment shortages during the SARS-CoV-2 (COVID-19) pandemic. Applied Biosafety, 25(2):67–70.

  84. Seppänen, O., Fisk, W., and Mendell, M. (1999). Association of ventilation rates and co2 concentrations with health andother responses in commercial and institutional buildings. Indoor air, 9(4):226–252.

  85. Shair, F. H. and Heitner, K. L. (1974). Theoretical model for relating indoor pollutant concentrations to those outside. Environmental Science & Technology, 8(5):444–451.

  86. Shen, Y., Li, C., Dong, H.,Wang, Z., Martinez, L., Sun, Z., Handel, A., Chen, Z., Chen, E., Ebell, M. H., et al. (2020). Community outbreak investigation of SARS-CoV-2 transmission among bus riders in eastern China. JAMA Internal Medicine.

  87. Shendell, D. G., Prill, R., Fisk, W. J., Apte, M. G., Blake, D., and Faulkner, D. (2004). Associations between classroom co2 concentrations and student attendance in washington and idaho. Indoor Air, 14(5):333–341.

  88. Stilianakis, N. I. and Drossinos, Y. (2010). Dynamics of infectious disease transmission by inhalable respiratory droplets. Journal of the Royal Society Interface, 7(50):1355–1366.

  89. Stutt, R. O. J. H., Retkute, R., Bradley, M., Gilligan, C. A., and Colvin, J. (2020). A modelling framework to assess the likely effectiveness of facemasks in combination with lock-down in managing the COVID-19 pandemic. Proc. R. Soc. A., 476:20200376.

  90. Sun, Y., Wang, Z., Zhang, Y., and Sundell, J. (2011). In china, students in crowded dormitories with a low ventilation rate have more common colds: evidence for airborne transmission. PloS One, 6(11):e27140.

  91. van den Berg, P., Schechter-Perkins, E. M., Jack, R. S., Epshtein, I., Nelson, R., Oster, E., and Branch-Elliman, W. (2021). Effectiveness of three versus six feet of physical distancing for controlling spread of covid-19 among primary and secondary students and staff: A retrospective, state-wide cohort study. Clinical Infectious Diseases.

  92. Van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., et al. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England Journal of Medicine, 382(16):1564–1567.

  93. Volz, E., Mishra, S., Chand, M., Barrett, J. C., Johnson, R., Geidelberg, L., Hinsley, W. R., Laydon, D. J., Dabrera, G., O’Toole, Á., Amato, R., Ragonnet-Cronin, M., Harrison, I., Jackson, B., Ariani, C. V., Boyd, O., Loman, N., McCrone, J. T., Gonçalves, S., Jorgensen, D., Myers, R., Hill, V., Jackson, D. K., Gaythorpe, K., Groves, N., Sillitoe, J., Kwiatkowski, D. P., Flaxman, S., Ratman, O., Bhatt, S., Hopkins, S., Gandy, A., Rambaut, A., and Ferguson, N. M. (2021). Transmission of SARS-CoV-2 lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data. medRxiv.

  94. Watanabe, T., Bartrand, T. A.,Weir, M. H., Omura, T., and Haas, C. N. (2010). Development of a dose-response model for SARS coronavirus. Risk Analysis, 30(7):1129–1138.

  95. Wells, W. F. (1955). Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infections. Harvard University Press.

  96. Yan J, Grantham M, Pantelic J, et al. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc Natl Acad Sci USA. 2018;115:1081-1086.

  97. Yang, W. and Marr, L. C. (2011). Dynamics of airborne influenza a viruses indoors and dependence on humidity. PLOS ONE, 6(6):1–10.

  98. Zhang, J., Litvinova, M., Liang, Y., Wang, Y.,Wang,W., Zhao, S.,Wu, Q., Merler, S., Viboud, C., Vespignani, A., et al. (2020a). Changes in contact patterns shape the dynamics of the COVID-19 outbreak in china. Science, 368:1481–1486.

  99. Zhang, R., Li, Y., Zhang, A. L., Wang, Y., and Molina, M. J. (2020b). Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc. Nat. Acad. Sci., 117(26):14857–14863.

  100. Zhu, Y., Bloxham, C. J., Hulme, K. D., Sinclair, J. E., Tong, Z. W. M., Steele, L. E., Noye, E. C., Lu, J., Xia, Y., Chew, K. Y., Pickering, J., Gilks, C., Bowen, A. C., and Short, K. R. (2020). A meta-analysis on the role of children in SARS-CoV-2 in household transmission clusters. Clinical Infectious Diseases.